Formation and Properties of Complexes of Type IrH₃(PR₃)₂L

By B. E. MANN, C. MASTERS, and B. L. SHAW* (School of Chemistry, The University, Leeds LS2 9]T)

Summary $IrH_{\delta}(PEt_2Ph)_2$ reacts with a variety of ligands L to give compounds of the type $IrH_3(PEt_2Ph)_2L$ and the ¹H (hydride) n.m.r. patterns of *fac*- and *mer*- IrH_3 (tertiary phosphine)₃ have been analysed for the first time.

WE have reported¹ that the complex, previously formulated as a trihydride $IrH_3(PEt_2Ph)_2$,² is in fact a pentahydride, $IrH_5(PEt_2Ph)_2$. This complex, when treated with 1 mole proportion of PEt₂Ph in benzene evolves hydrogen and gives mainly *mer*-IrH₃(PEt₂Ph)₃ configuration (I) together with a few percent of *fac*-IrH₃(PEt₂Ph)₃ configuration (II).

Previously the ¹H n.m.r. (hydride) spectrum of *mer*-IrH₃-(PEt₂Ph)₃² and *mer*-IrH₃(PPh₃)₃³ have been reported to be 1:3:3:1 quartets. We now find the hydride resonance of

 $IrH_3(PEt_2Ph)_3$ (Table 1) to consist of a double doublet of 1:2:1 triplets due to H(1) and H(3) (I) and a double triplet of triplets due to H(2) *i.e.* it is the pattern expected for stereochemistry (I) and not that of a fluxional molecule. With the compounds $OsH_4(PMe_2Ph)_3$,⁴ $ReH_5(PMe_2Ph)_3$,⁵ and $WH_6(PMe_2Ph)_3$ ⁶ the hydridic hydrogens are apparently equivalent and these hydrides are possibly fluxional.

We now find that other ligands (L) react with IrH₅(PEt₂-Ph)₂ in benzene with hydrogen evolution to give trihydrides of type IrH₃(PEt₂Ph)₂L L = PPh₃, AsMe₂Ph, SbPh₃, SMe2, P(OMe)3, P(OMe)2Ph, or MeNC. The reactions are readily followed by n.m.r., which shows the yields to be high and the stereochemistry of the major ($\geq 90\%$) product to be (III). The other, and minor, product is fac-IrH₃(PEt₂Ph)₂L (IV) formed in yields of from ca. 1% for $L = AsMe_2Ph$ to ca. 10% for $L = SMe_2$ or $SbPh_3$. N.m.r. data for the complexes of configuration (III) are given in Table 1. The complexes of configuration (III) which have so far been isolated and characterised are with $L = P(OMe)_3$, AsMe₂Ph, or SbPh₃. Thus the major reaction path stereospecifically gives a complex of stereochemistry (III). The starting complex IrH₅(PEt₂Ph)₂ also has its PEt₂Ph ligands in mutually trans-positions (from its almost zero dipole moment).²

When $IrH_5(PEt_2Ph)_2$ is treated with carbon monoxide some $IrH_3(CO)(PEt_2Ph)_2$ of configuration (III) is formed in solution (n.m.r. evidence, Table 1) but loss of another mole of hydrogen occurs readily giving $IrH(CO)_2(PEt_2Ph)_2$, for which the hydride resonance is a triplet at τ 21.57, J_{PH} = 24.9 Hz. Complexes of the type $IrH_3(PEt_2Ph)_2L$ (IV) with $L = SMe_2$ or SbPh₃ give spectra of the AA'MXX type. These spectra are only interpretable if $J_{P(1)H(1)}$ and $J_{P(1)H(3)}$ are opposite in sign. The data are given in Table 2. Since in trans-PtHCl(PEt_s)₂ ${}^{2}J_{PMH} = -14.4$

(tertiary phosphine)₃ have not previously been analysed. We have also treated IrH₅(PEt₃)₂ with AsMe₂Ph giving IrH₃(PEt₃)₂ (AsMe₂Ph) of configuration (III). For this

		H tran	H trans to L				
L	$ au_{ m H}$	$J_{\mathbf{P(1)H(1)}}$	$J_{{\rm H}(1){\rm H}(2)}$	$J_{LH(1)}$	$ au_{ ext{H}}$	$J_{P(1)H(2)}$	$J_{LH(2)}$
			IrH ₃ (PEt ₂)	$Ph)_{2}L$			
PEt_Ph	21.82	16.8	4.6	14.2	23.54	23.0	114.6
PPh.	21.25	16.9	$4 \cdot 2$	13.8	23.31	22.9	120.8
AsMe.Ph	$21 \cdot 81$	16.7	4.4		25.53	21.4	
SbPh.	21.72	16.1	3.4		24.95	19.7	
SMe.	20.89	17.2	4 ·8		28.43	20.3	
P(OMe),	21.71	16.8	4.8	14.6	22.57	21.5	186-4
P(OMe) Ph	21.34	16.6	4.7	13.6	$22 \cdot 54$	21.7	163.6
cò "	20.79	16.5	4.8		21.58	20.7	
MeNC	21.50	16.7	4.9		23.36	20.8	
			IrH.(PEt	a) aL			
PEt.	22.87	16.1	4 ∙6	15.2	$24 \cdot 40$	$23 \cdot 4$	115.3
AsMe ₂ Ph	22.42	17.0	4.6		$25 \cdot 94$	21.2	

TABLE 1

¹H n.m.r. data for complexes of the types $IrH_3(PEt_2Ph)_2L$ and $IrH_3(PEt_3)_2L$. J-values in Hz: benzene solution

TABLE 2

¹H n.m.r. data for complexes of types IrH₃(PEt₂Ph)₂L, configuration (IV): in benzene

L	$ au_{\mathrm{H(1)}}$	$J_{P(1)H(1)}$	$J_{\mathbf{HH}}$	$J_{P(1)H(3)}$	${}^{ au}{ m H(2)}$	$J_{P(1)H(2)}$
PEt ₂ Ph	21.94	± 120	?	干17	21.94	
SDPh ₃ SMe ₂	22·83 21·00	$ \pm 109 \cdot 3 \\ \pm 131 \cdot 6$	$\begin{array}{c} ca. \ 0\\ 4\cdot 0 \end{array}$	+18.8 ∓ 20.4	23.96 27.44	16.3

 Hz^7 and in trans-PdI₂(PMe₃)₂ $J_{PMP} = +572 Hz^8$ it seems likely that the upper set of signs in Table 2 is correct. Analysis of the n.m.r. pattern of fac-IrH₃(PEt₂Ph)₃ as an AA'A''XX'X'' pattern^{9,10} gives the data in Table 2; the resonances are too broad to determine $J_{H(1)H(2)}$. The hydride resonances of complexes of the type fac-IrH3

complex double resonance experiments show that $J_{P(1)H(1)}$ and $J_{P(1)H(2)}$ have the same sign (probably negative).

We thank the Science Research Council and Imperial Chemical Industries Ltd. for financial support.

(Received, May 19th, 1970; Com. 779.)

- ¹ B. E. Mann, C. Masters, and B. L. Shaw, Chem. Comm., 1970, 703.
- ² J. Chatt, R. S. Coffey, and B. L. Shaw, *J. Chem. Soc.*, 1965, 7391. ³ M. Angoletta and G. Caglio, *Gazzetta*, 1969, **99**, 46.
- ⁴ P. G. Douglas and B. L. Shaw, J. Chem. Soc. (A), 1970, 334.
- ⁵ J. Chatt and R. S. Coffey, J. Chem. Soc. (A), 1963 and references therein. ⁶ J. R. Moss and B. L. Shaw, Chem. Comm., 1968, 632.
- ⁷ W. McFarlane, *Chem. Comm.*, 1967, 772. ⁸ J. Verkade, personal communication.

- ⁹ P. Diehl, *Helv. Chim. Acta*, 1965, **48**, 567.
 ¹⁰ R. G. Jones, R. C. Hirst, and H. J. Bernstein, *Canad. J. Chem.*, 1965, **43**, 683.